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ABSTRACT

The main purpose of this paper is to study the impact of consumer concentration
around the market center on the equilibrium locations of location—price games. In the case
of symmetric triangular density, it is shown that no symmetric equilibrium exists.
However, we demonstrate the existence of asymmetric equilibria in pure strategies; these
equilibria are also characterized. Our secondary purpose is to study the sequential entry of
two firms when the location space is not restricted to the market space. This leads us to
uncover a substantial first—mover advantage, which has been neglected in the literature.
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1. INTRODUCTION

Ever since the pioneering contribution of Hotelling (1929), most of the literature on
spatial competition has assumed a uniform distribution of consumers (see Gabszewicz and
Thisse (1992) for a recent survey and references). Clearly, such a simplifying assumption is
due to its mathematical tractability. However, research in marketing has pointed out the
existence of "consumer pockets” in the characteristics space, corresponding to customers
whose preferences are clustered around some fashionable brands (see, e.g. Kuehn and Day
(1962)). Similarly, in the urban setting, it is well known that the distribution of
households is concentrated around the central business district (see, e.g. Clark (1951)).
Therefore, the need to consider non—uniform distributions is apparent.

In this paper, we study the equilibrium locations of location—price games when
consumers are concentrated around the market center. For this purpose, we consider the
simple case of a symmetric and triangular density of consumers. The higher concentration
of consumers around the center suggests that firms would move toward more central
locations than in the case of a uniform density. This a priori reasonable conjecture is not
confirmed by the analysis. Somewhat surprisingly, there exists no symmetric location
equilibrium in this model. This is because the best reply functions are discontinuous when
firms are symmetrically located. However, asymmetric equilibria turn out to exist. Thus,
in equilibrium, one firm is strictly better—off than its rival despite the fact that the firms
compete under identical conditions. As discussed in the concluding senction, this is not an
artifact of triangular density. The same results hold for a wide class of convex densities
such as the negative exponentials, thus casting some doubts on the robustness of results
derived under the uniform density assumtion. Furthermore, we relax the standard
assumption that firms must locate inside the market space. To our surprise, other -
equilibria emerge when firms are free to choose their locations outside the market space.

The secondary purpose of this paper is to revisit Hotelling’s duopoly model in light
of Prescott and Visscher’s (1977) approach. These authors observe that many real world
location decisions are not made simultaneously, but rather sequentially. Given that most

location decisions are irrevocable, the first entrant will strive to anticipate the choices of
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the subsequent entrants. In this paper, we limit ourselves to the case of two firms. Both
firms enter the market sequentially but choose their prices simultaneously. Our
formulation of sequential entry differs, therefore, from that adopted by Anderson (1987)
who considers a two—stage Stackelberg game in location and price. Since, in most cases,
prices can be revised after the entry of a new firm, a simultaneous Nash equilibrium seems
indeed to be more appropriate to model price competition. Moreover, here also, we do not
assume that the location space is restricted to the market space. This leads to a
substantial first—mover advantage, unlike Neven (1987) who assumes that firms locate
inside the market space.

The remainder of the paper is organized as follows. The model is described in
Section 2. In Section 3, we explore the existence of a subgame perfect Nash equilibria in
pure strategies for a location—price game in which the consumer density is triangular. In
Section 4, the assumption of simultaneous location choices is replaced with that of

sequential choices and the corresponding equilibrium is analyzed. Section 5 concludes the

paper.

2. THE MODEL

There are two firms producing a homogeneous good at a constant and equal
marginal cost, which is set equal to zero. There is a continuum of consumers distributed
over the unit segment [0,1] and -their location is denoted by x€[0,1]. Let F(x) be the
cumulative distribution of consumers, where the total population F(1) is normalized to one,
and f(x) be the corresponding density. Two distributions are considered in this paper: (i)
the uniform density in which f(x)=1 for all x€[0,1]; (ii) the {riangular density in which
f(x)=2-2|2x—1| for all x¢[0,1]. We retain these two distributions because the uniform
density is commonplace in the literature and because the triangular one is the simplest
density that captures the idea of consumer concentration about one point. The
transportation cost incurred by consumers is assumed to be a quadratic function of distance
(without loss of generality, the transportation coefficient is normalized to one). Each

consumer buys one unit of the good from the firm having the lower full price (i.e., mill
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price plus transportation cost).
When firms are set up at X #X, in R, the marginal consumer, who is indifferent

between purchasing from either firm, is located at x as given by:

xX= (p2—p1+x%—x%)/2(x2—x1). (1)
When X <Xy the firms’ profit functions are respectively
I, =p,F(x) and I, = py[l-F(x)]. (2)
For X, >X, they are
I, =p [1-F(x)] and I, = pyF(x). (3)

Finally, when X, =X, the profit functions are as in the Bertrand game.

We seek subgame perfect Nash equilibria. Hence, we solve the game by backward
induction, starting from the last stage: given Xy and X, firms choose simultaneously their
(mill) price Py and P, with P;,P920. The following result, due to Caplin and Nalebuff
(1991), guarantees the existence of a price equilibrium in pure strategies for a wide class of

consumer density functions that includes the uniform and triangular ones.

Proposition 1
If the transportation cost is quadratic in distance, then for any given locations of
firms and for any log—concave consumer density function,! there exists a Nash price

equilibrium. Furthermore, this equilibrium is unique.

Assuming X, <Xq, the profit functions are differentiable, and the first—order

conditions for equilibrium prices are given by

o, - p,f(x) o

—_— = F(x) - =4y (43’)
op, 2(xyx,)
My 1-F(x) — B (4b)
dp,, 2(x9x,)

We know from Proposition 1 that (4a) and (4b) yield a unique price equilibrium when f(x)
is log—concave. Expressions similar to (4a) and (4b) can be obtained for x, >x,,.

Regarding the earlier stage(s) of the game, we assume in section 3 that firms choose
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stmultaneously their locations X and X in R, while in section 4 we suppose that firms
select their locations sequentially. In both cases, they anticipate the outcome of the

subsequent price stage given by Proposition 1.

3. SIMULTANEOUS LOCATION CHOICE

We assume here that both firms select their location simultaneously and then, after
having observed the decisions made, choose their price simulaneously. When X|=Xg, the
profit functions are H;(xl,x2)=l'[;(x1,x2)=0. Suppose now that x; <x, (without loss of
generality, this assumption is made throughout this section and the next one). Plugging
the first—order conditions (4a)—{4b) for equilibrium prices into (2) yields the payoff
functions of the location game:

cp) = z(xz—xl)Fz()})/;(i): (52)
T0,(xy,%5) = 2(xy—x, )[1-F(x)]“/f(x). ' (5b)
A Nash location equilibrium, §N =(xlf,x1§) is such that firm i maximizes H:(xi,xl;.‘) with
respect to x; (i,j=1,2 and i#j). Clearly, the agglomeration of the two firms (x1=x2) is
never an equilibrium of the location game since the profits are zero. Furthermore, for any
given location pair, ;( can be determined by solving the equation
2F(x) — 1 + (x—x,/2-%,/2){(x) = 0, | (6)

which is obtained directly by subtracting (4b) from (4a) and by replacing py—P; in (1). At
any location equilibrium, ;:6]0,1[ since otherwise one firm would be driven out of business.
Furthermore, ;c=1/ 2 if and only if firms have symmetric locations.

In the uniform density case, (6) shows that

x = (24%,+x,)/6. (1)

With the triangular density, two cases arise. If x1+x2<1, then

~ X HXoH/(x+x, ) 248
e Sl 1%y ; (8a)
8

if X +xy>1, then

A Xy HXo+6—/(x,+x,—2) 2+8
X = 1 2 1 2 . (Sb)
8
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It is easy to check that (8a) and (8b) are equal to 1/2 when the two firms are located
symmetrically (x; +xo=1). When xis differentiable, 656;/ 6x1=6;c/ x5 >0.

If f(;c) is differentiable, we have

2 . 200\ (x
zﬁ—i - _F_@.Q_ + 2xy—x )P(x) (xz_xl)u%f.)ﬁﬁ =0, (92)
ﬁ; = l_ff%ll_ 2xg=x,)[1-P(R))8 — (xyme L= ’f‘ : ; S (9b)

Dividing (9a) by F(x) and (9b) by l—F(x), adding these two expressions, and substituting

(xg—x, )8 from (9b), we obtain after simplifications

H(x) = [1-2F ()} (x) ~ [1-Fx)[F(x)P(x) = 0. (10)

PN

This equation must be satisfied for any location equilibrium such that f(x) exists.

3.1 Consider first the case of a uniform density. Clearly, x=1 /2 is the only solution to
(10) so that the equilibrium locations must be symmetric. Using (7), (5a) and (5b) can be
rewritten as

n‘l;(xl,xz) = (xg=x)(24+x+%,)*/ 18, (11a)

My(x; %) = (x2—x1)(4—-x1-x2)2/18. (11b)
Because the strategy space of firm 1 is unbounded and because its payoff is continuously
differentiable everywhere, firm 1’s equilibrium location must satisfy the first—order
condition as an equality.  Differentiating (11a) with respect to x, yields after
simplifications —2-3x, +x,=0. Since we may restrict ourselves to a symmetric solution
(x1+x2=1), the candidate equilibrium locations are given by

Y =-1/4 and xj=5/4 (12)
* *

The second—order conditions of maximization of II; and I, being satisfied at these values,
(12) is the unique Nash equilibrium of the location game. Hence, under a uniform
distribution, firms choose to locate outside the market. This unexpected result reflects the
fact that price competition under quadratic transportation costs is very fierce indeed.

However, firms do not want to set up at infinity because the two best reply curves are
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linear and not parallel.

3.2  We now move to the triangular density. Our first result rules out the possibility of

symmetric equilibria.

Proposition 2
For the symmetric triangular distribution of consumers, there ezils no symmetric

location equilibrium.

*
Proof: Since the distribution is triangular, we can compute I, defined by (5a) when
x, and x, are almost symmetric about the market center. After some standard, but
tedious, calculations, we obtain
* * 2
I (1—xg—€,x9) — IT, (1-x5,%5) = (1-x,)€/2 + O(¢),
and
* * 2
I, (1xy+€,x5) =TI (1-%,%,)) = 5(x,~4/5)€/12 + O(¢”), .
where ¢>0 is small enough. That is: (a) for x2$4/5, we have Hl(l—x2~e,x2)>
* * *
Hi(l_XZ’XZ); ib) for 4/5<x,<1, . Hl(l—xz—e,x22>r_11(1—x2,x2) and
I, (1-xy+ €,%9)> 11 (1-x,,x,); (c) for xg21, M(1-x9+€x9)>11;(1-X5,%,).  Therefore,
when x4 and X, are symmetric about the center, x, is not firm 1’s best reply against X,

The same holds for firm 2. u

The nonexistence of a symmetric equilibrium is somewhat surprising since our game
involves two identical firms competing under identical conditions. It is due to the
discontinuity of the best reply function when X, +Hxy=1 (see Figure 1 for an illustration).
This discontinuity itself arises because of the discontinuity of f* at the market center.
When firms are symmetrically located butvfa,r enough, the discontinuity of f’(;c) at x=1 /2
makes an infinitesimal move inward profitable because the firm gains a whole strip of
consumers. On the other hand, when firms are symmetrically located but not far from each

other, the discontinuity makes an infinitesimal move outward profitable because prices
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steeply increase (as shown by differentiating (4a) with respect to x;). In a more formal -
* %

way, we observe that the profit function II, (11,) is not quasi—concave: when 4/5<x2<1

(see case (b) in the above proof), the symmetric configuration corresponds to a local

¥ x
minimum of II, (T1,).
[Insert Figure 1 about here}
However, asymmetric equilibria may exist as shown below.

Proposition 3
When the distribution of consumers is triangular, there ezist two asymmetric Nash
location equilibria, which are given by
' ( N N {(%/9,5\/6/18)

12277 (125,8/18, 1-4046/9).

Proof: By Proposition 2, we may restrict ourselves to asymmetric location pairs. Since
;#1/2, f’(;c) exists. Solving (10), we get the following values for x: 0,1//6,1-1//6,1. We
have already seen that ;(=0 and ;c=1 must be ruled out. Hence, only two solutions are left:
x=1 /v/6 and x==1-1 /8. The corresponding candidate equilibrium locations can be
obtained from (6) and (9a): (—/6/9,5/6/18) and (1-5/6/18,1+6/9). We show below that
the first location pair is an equilibrium. Since the setting is symmetric about 1/2, this
implies that the second pair is also an equilibrium.
(i) Let us show that xT:—,/b’/Q is the best reply against x1;=5J6/ 18.
Replacing x,, by xg in (5a) and differentiating with respect to x, yields
*
on

-3 A )
1 4x 2

= - [~16x24(10/yB)x-+1],
OX1 ™ 8x% 4 1

R N . . .
when x€]0,1/2{. The sign of 8Il,/dx, is given by the sign of G, (x)= —16x2+(10/,/§)x+1.

Clearly, Gl(x)%o for xél/,/ﬁ, which corresponds to xlfé—\/G/Q. Therefore, in order to
*
prove that xlfz—/E/Q yields a global maximum, it suffices to show that 6H1/0x150 for all
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-~ * -~
x€]1/2,1[ because I, is continuous with respect to x.

When ;e]l /2,1], some tedious calculations show that
*

Iy 120 x) -4 36-10/6 “2 18-5/8 , O\
Bx, = - B (32(1—x)"- (13- 2(1x) (1—x)—1].

The sign of c'iH:/ Ox, is given by the sign of Gz(;() defined by the bracketed term at the
numerator of this expression. It is readily verified that' G2(1/2) and Gy(1) are both
negative. Furthermore, studying the first and the second order derivatives of G2(;c) shows
that this function first decreases and then increases over the interval J1/2,1[. Hence,
Gz(;c)<0 for all ;ce]l /2,1] so that xlf=—\/6/9 is firm 1's best reply against x1;=5,/6/ 18.
(ii) We next prove thaf x§=5\/6’/18 is firm 2's best reply against x?:—,/ﬁ/g. The
argument is similar to the one above. First, for )16]0 1/2{, we have
_Tbli [-64x3(17/48~x2)—40yBx2(7/20—2) /314 /3~8].
6x 8x"+x
Since the bracketed term is negative, it is clear that 6H2/6x2>0 for x51/,/6 which
corresponds to x2§5,/6’/ 18. Therefore, in order to prove that x2=5,/6/18 yields a global
maximum, it suffices to show that BH;/ Bx4<0 for all )16]1/2,1[.
When ;(6]1/2,1[, we have
o,

2__ 21 x) — < =
™ s 105088+ 41-2))

which is negative for all ;E]l [2,1]. =

The market share of firm 1 is F(1/4/6)=1/3 at the first location equilibrium, and
F(1-1//6)=2/3 at the second one. The corresponding profits are (7/54,14/27) and
(14/27,7/54) respectively. These profit values are less than the profit earned by each firm
in the uniform case. The concentration of consumers around the center attracts the two
firms, which reduces the distance between them and intensifies price competition. The
result is a decrease in the equilibrium profits of both firms.2

Unlike the uniform distribution, the triangular distribution, though symmetric,
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leads to asymmetric locations, prices and profits. In other words, competition between two
identical firms results in asymmetric locations if consumers are symmetrically concentrated
around the center. This shows the lack of robustness of the symmetric equilibrium which
often appears in the literature on spatial competition. However, the existence of two
asymmetric equilibria, in which firms make different profiis, leaves open the question of

which equilibrium arises.

4. SEQUENTIAL LOCATION CHOICE

Until now, we have focused on the simultaneous game in location. However, as
discussed in the introduction, it may be more realistic to assume that firms enter the
market sequentially while price competition remains simultaneous. More precisely, there
are now three stages. The first two stages describe a Stackelberg game in location while
the third stage is a simultaneous subgame in price.

Formally, the model of Section 2 has to be modified in the following manner. Firm
1 (the leader) maximizes its profit HI(xl,xz) with respect to x,, replacing x, by firm 2 (the
follower)’s best reply function xg=R(x;), which is itself derived from the maximization of
H;(xl,x2) with respect to Xg The resulting Stackelberg location equilibrium is denoted by
J_(S=(x§,xg). Assuming that R(xl) is single—valued and differentiable, the first—order
conditions for such an equilibrium are as follows:

di,  om,  aI dR
11,71 (132)

dx, - Bxl 6x2 dxl'
*
6112
—= =0, (13b)
3x2
. a2 * * 2 . .
where dR/dx, is equal to —( H2/6x28x1)/(82rl2/6x2). Solving (6) and (9b) with respect
tox, and Xo, and replacing these variables in (13a), we get:
* - ~
dl, _ 4F(x)K(x;x, )
dx; {20+ 1-F(x))P (OH(x)

where

K(xix,) = [1-2P()+R(x)(0)-{1-F(R)F()P(x). (14)
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Using (11b), the denominator of (14) can be shown to be positive for all ;ce]O,l[ so that

* .
sgn(dl'llldxl)= sgn(K(x)). This property is used in the proposition below.

Proposition 4
If the distribution of consumers is uniform or triangular, then the first entrant

necessarily locales at the market center.

Proof:
(i) Uniform distribution

Some standard manipulations show that firm 2's best reply function is
R(x,)=x,/3+4/3. Using this expression and (7), (14) shows that
sgn(dH;/dx1)=sgn(1—2x1). Therefore, the optimum location of the first entrant is
xj=1/2.

(ii) Triangular distribution

Because f(x) is symmetric, it is sufficient to show that dHI/dx1>0 for all
x,€}-w,1/2[ such that ;(E]O,l[.
(a)  Assume first that x¢1 /2.

By solving (6) and (9b) with respect to x, and X,, it can be shown that (5a)
depends only upon Xz;cze[ﬂ 1/4]:

1 (x) X(-32X +2sx2-4x 1)
12X —4X—-—1

Differentiating this expression with respect to X, we get

din(X)/dx = —o &)

(12X“-4X-1)
4 2

where L(X) = —768X5+720X —96X°3_56X2+8X+1. Differentiating L(X) yields
L(X)=8(1-2X)M(X), whéte M(X)EI—IZX—6OX2+24OX3. Differentiating M(X) gives
M'(X)=12(-1-10X+60X2). Since M’(0)<0 and M’(1/4)>0, M’(X) changes its sign only
once in the interval [0,1/4]. Moreover, since M(0)>0 and M(1/4)<0, M(X), and hence

*
L’(X), changes its sign only once in [0,1/4]. Consequently, dIT,(X)/dX is first increasing
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and then decreasing on [0,1/4] because sgn(dHI(X)/dX):sgn(L(X)). Since dHI/dX>0 at
X=0 and X=1/4, and since 0X/d,>0, we can conclude that
sgn(dIl /dx,)=sgn(dIT; (X)/dX) s positive for all Xe[0,1/4], i.e., for all xe[0,1/2].
(b)  Suppose now that x>1 /2.

Computing K(;c;xl) as given by (14), we get

sgn(dll /dx,) = sgn(6(1—x)2-1+2R(x,)), for xel1/2,1). (15)
It therefore remajné to show that (15) is positive.

Setting (9b) equal to zero and using (8b), we get firm 2's best reply function R(xl).

Differentiating R(xl) with respect to x,, we obtain
' 1 9(1—x,) N 24[143(1—x,)/C]

R(x,)=--+
U™ 4 4 (3-3x,+C)*
1 9(1x,) 24
>——+ L z N(x,),
420 5(8-3x,)

where C = y9(1—x;)"+16 < 5 for all x,€]0,1/2]. Indeed, since ;c>1/2, xy=R(x,) lies above
X, +x9=1 which implies that x; must be positive as shown by Figure 1.

However, since N(x,) = 9(—9xf+48x1—32)/[20(3x1——8)2]<0 on [0,1/2], we have
R'(x;)>N(1/2)=371/520.  Replacing R’(x;) by this value in (15), we see that
sgn(dIII/dxl)= sgn(6(1—;:)2+111/260), which is positive for all ;(6]1/2,1]. =

The Stackelberg equilibrium locations are then summarized as follows:
(i) for the uniform distribution,
5- | (1/2, 3/2)
2 3

(xS X
v (1/2,-1/2)

and
* * '
(M )(x%)) = (8/8.2/9);
(ii) for the triangular distribution,
g 5 (12 1443)
(xlxxz) = {

(1/2,-0.443)
and

(I (), 5 (x5)) = (0.715,0.089).
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In either case, the first—-mover advaniage is substantial The profit of the firm 1 is four
times as large as that of firm 2 in the uniform case, and approximately eight times in the
triangular case. The latter exhibits a larger profit differential because of the higher
concentration of consumers around the center where the first entrant locates.

Furthermore, under the uniform distribution of consumers, we have (x?,xg)=(0,l)
when the location space is restricted to [0,1]. When this constraint — the justification of
which is far from being obvious to us — is relaxed, we obtain a totally different pattern as
one firm (the leader) locates at the market center and the other (the follower) outside the

market space.

5. CONCLUSIONS

Our main results can be illustrated by the following two diagrams:

6 0321 1 1.271.44

S
0
3
2 2

I
BN s
R jor

where N stands for the simultaneously chosen locations and S for the sequential ones.

The following remarks are in order.
(i) It can be shown that Proposition 2 still holds when the triangular density has
positive and equal values at the market endpoints, however close it is to the uniform
density. The result also remains valid for convex but log—concave densities, such as the
negative exponentials, which are very popular in urban population distribution models (see
Proposition 3 in Tabuchi and Thisse (1989)). Thus, moving from the uniform density may

destrdy the existence of a symmetric equilibrium, even though the model remains
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symmetric. This suggests that the systematic emphasis put on symmetric equilibra in
standafd models of spatial competition is not well founded, and invites us to pay more
attention to asymmetric equilibria.

(ii) When the density is concave, symmetric and not "too much" different from the
uniform density, there exists a unique Nash location equilibrium, which is symmetric (see
Proposition 2 in Tabuchi and Thisse (1989)). More precisely, while firms locate at the
outside quartiles when the density is uniform, they locate closer to the market center as the
density becomes more concentrated. Eventually, they will lie inside the market. In such
cases, the price competition effect is outweighed by the demand effect generated by the
high concentration of consﬁmers around the center. According to Neven (1986, Proposition
3), the distance to the center from any equilibrium location is greater than 3/8. In view of
all those results, it appears that the set of location equilibria is very sensitive to the
specification of the consumer distribution, thus making the derivation of general results
very problematic.

(iii) As a final remark, let us say that the above analysis has also shed some light on the
role of the assumption that firms must locate inside the market space. Indeed, relaxing
this apparently innocuous assumption may lead to quite different equilibrium outcomes.
For example, in the sequential location game, this yields a completely different locational
configuration and uncovers a first—~mover advantage which does not appear in the standard
setting. Here also, these results invite us to revisit the models of horizontal product

differentiation when the location space is unbounded.
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FOOTNOTES

t A function is said to be log—concave when the logarithm of this function is concave.

For example, the positive (negative) exponentials and the power functions are log—concave.

2 When the strategy space of firm location is restricted to [0,1], Proposition 3 is
modified as follows: the equilibrium locations are (0, (,/53‘—3)/,/5./3‘3+2) and

(1Hv33-3)/ ,/2,/3'3-%2, 1) respectively while they are given by (0,1) in the uniform case.

Zy’s best reply

1.27

z2's best reply

21

-0.27 0 0.32 1.07

Figure 1 Best reply functions under the triangular consumer distribution





